882 research outputs found

    Quantum phases of atomic boson-fermion mixtures in optical lattices

    Full text link
    The zero-temperature phase diagram of a binary mixture of bosonic and fermionic atoms in an one-dimensional optical lattice is studied in the framework of the Bose-Fermi-Hubbard model. By exact numerical solution of the associated eigenvalue problems, ground state observables and the response to an external phase twist are evaluated. The stiffnesses under phase variations provide measures for the boson superfluid fraction and the fermionic Drude weight. Several distinct quantum phases are identified as function of the strength of the repulsive boson-boson and the boson-fermion interaction. Besides the bosonic Mott-insulator phase, two other insulating phases are found, where both the bosonic superfluid fraction and the fermionic Drude weight vanish simultaneously. One of these double-insulator phases exhibits a crystalline diagonal long-range order, while the other is characterized by spatial separation of the two species.Comment: 4 pages, 3 figures, using REVTEX

    Selected Topics in Three- and Four-Nucleon Systems

    Full text link
    Two different aspects of the description of three- and four-nucleon systems are addressed. The use of bound state like wave functions to describe scattering states in NdN-d collisions at low energies and the effects of some of the widely used three-nucleon force models in selected polarization observables in the three- and four-nucleon systems are discussed.Comment: Presented at the 21st European Conference on Few-Body Problems in Physics, Salamanca, Spain, 30 August - 3 September 201

    Phase Diagram of Bosonic Atoms in Two-Color Superlattices

    Full text link
    We investigate the zero temperature phase diagram of a gas of bosonic atoms in one- and two-color standing-wave lattices in the framework of the Bose-Hubbard model. We first introduce some relevant physical quantities; superfluid fraction, condensate fraction, quasimomentum distribution, and matter-wave interference pattern. We then discuss the relationships between them on the formal level and show that the superfluid fraction, which is the relevant order parameter for the superfluid to Mott-insulator transition, cannot be probed directly via the matter wave interference patterns. The formal considerations are supported by exact numerical solutions of the Bose-Hubbard model for uniform one-dimensional systems. We then map out the phase diagram of bosons in non-uniform lattices. The emphasis is on optical two-color superlattices which exhibit a sinusoidal modulation of the well depth and can be easily realized experimentally. From the study of the superfluid fraction, the energy gap, and other quantities we identify new zero-temperature phases, including a localized and a quasi Bose-glass phase, and discuss prospects for their experimental observation.Comment: 18 pages, 17 figures, using REVTEX

    On the Background Field Method Beyond One Loop: A manifestly covariant derivative expansion in super Yang-Mills theories

    Get PDF
    There are currently many string inspired conjectures about the structure of the low-energy effective action for super Yang-Mills theories which require explicit multi-loop calculations. In this paper, we develop a manifestly covariant derivative expansion of superspace heat kernels and present a scheme to evaluate multi-loop contributions to the effective action in the framework of the background field method. The crucial ingredient of the construction is a detailed analysis of the properties of the parallel displacement propagators associated with Yang-Mills supermultiples in N-extended superspace.Comment: 32 pages, latex, 7 EPS figures. v2: references, comments added, typos corrected, incorrect `skeleton' conjecture in sect. 3 replaced by a more careful treatment. v3: typos corrected, final version published in JHE

    Critical properties of 1-D spin 1/2 antiferromagnetic Heisenberg model

    Full text link
    We discuss numerical results for the 1-D spin 1/2 antiferromagnetic Heisenberg model with next-to-nearest neighbour coupling and in the presence of an uniform magnetic field. The model develops zero frequency excitations at field dependent soft mode momenta. We compute critical quantities from finite size dependence of static structure factors.Comment: talk given by H. Kr{\"o}ger at Heraeus Seminar Theory of Spin Lattices and Lattice Gauge Models, Bad Honnef (1996), 20 pages, LaTeX + 18 figures, P

    Low-energy p-d Scattering: High Precision Data, Comparisons with Theory, and Phase-Shift Analyses

    Get PDF
    Angular distributions of sigma(theta), A_y, iT_11, T_20, T_21, and T_22 have been measured for d-p scattering at E_c.m.=667 keV. This set of high-precision data is compared to variational calculations with the nucleon-nucleon potential alone and also to calculations including a three-nucleon (3N) potential. Agreement with cross-section and tensor analyzing power data is excellent when a 3N potential is used. However, a comparison between the vector analyzing powers reveals differences of approximately 40% in the maxima of the angular distributions which is larger than reported at higher energies for both p-d and n-d scattering. Single-energy phase-shift analyses were performed on this data set and a similar data set at E_c.m.=431.3 keV. The role of the different phase-shift parameters in fitting these data is discussed.Comment: 18 pages, 6 figure

    Photoinduced 3D orientational order in side chain liquid crystalline azopolymers

    Full text link
    We apply experimental technique based on the combination of methods dealing with principal refractive indices and absorption coefficients to study the photoinduced 3D orientational order in the films of liquid crystalline (LC) azopolymers. The technique is used to identify 3D orientational configurations of trans azobenzene chromophores and to characterize the degree of ordering in terms of order parameters. We study two types of LC azopolymers which form structures with preferred in-plane and out-of-plane alignment of azochromophores, correspondingly. Using irradiation with the polarized light of two different wavelengths we find that the kinetics of photoinduced anisotropy can be dominated by either photo-reorientation or photoselection mechanisms depending on the wavelength. We formulate the phenomenological model describing the kinetics of photoinduced anisotropy in terms of the isomer concentrations and the order parameter tensor. We present the numerical results for absorption coefficients that are found to be in good agreement with the experimental data. The model is also used to interpret the effect of changing the mechanism with the wavelength of the pumping light.Comment: uses revtex4 28 pages, 10 figure

    Giant magnetothermopower of magnon-assisted transport in ferromagnetic tunnel junctions

    Full text link
    We present a theoretical description of the thermopower due to magnon-assisted tunneling in a mesoscopic tunnel junction between two ferromagnetic metals. The thermopower is generated in the course of thermal equilibration between two baths of magnons, mediated by electrons. For a junction between two ferromagnets with antiparallel polarizations, the ability of magnon-assisted tunneling to create thermopower SAPS_{AP} depends on the difference between the size Π,\Pi_{\uparrow, \downarrow} of the majority and minority band Fermi surfaces and it is proportional to a temperature dependent factor (kBT/ωD)3/2(k_{B}T/\omega_{D})^{3/2} where ωD\omega_{D} is the magnon Debye energy. The latter factor reflects the fractional change in the net magnetization of the reservoirs due to thermal magnons at temperature TT (Bloch's T3/2T^{3/2} law). In contrast, the contribution of magnon-assisted tunneling to the thermopower SPS_P of a junction with parallel polarizations is negligible. As the relative polarizations of ferromagnetic layers can be manipulated by an external magnetic field, a large difference ΔS=SAPSPSAP(kB/e)f(Π,Π)(kBT/ωD)3/2\Delta S = S_{AP} - S_P \approx S_{AP} \sim - (k_B/e) f (\Pi_{\uparrow},\Pi_{\downarrow}) (k_BT/\omega_{D})^{3/2} results in a magnetothermopower effect. This magnetothermopower effect becomes giant in the extreme case of a junction between two half-metallic ferromagnets, ΔSkB/e\Delta S \sim - k_B/e.Comment: 9 pages, 4 eps figure

    Theory of Two-Dimensional Quantum Heisenberg Antiferromagnets with a Nearly Critical Ground State

    Full text link
    We present the general theory of clean, two-dimensional, quantum Heisenberg antiferromagnets which are close to the zero-temperature quantum transition between ground states with and without long-range N\'{e}el order. For N\'{e}el-ordered states, `nearly-critical' means that the ground state spin-stiffness, ρs\rho_s, satisfies ρsJ\rho_s \ll J, where JJ is the nearest-neighbor exchange constant, while `nearly-critical' quantum-disordered ground states have a energy-gap, Δ\Delta, towards excitations with spin-1, which satisfies ΔJ\Delta \ll J. Under these circumstances, we show that the wavevector/frequency-dependent uniform and staggered spin susceptibilities, and the specific heat, are completely universal functions of just three thermodynamic parameters. Explicit results for the universal scaling functions are obtained by a 1/N1/N expansion on the O(N)O(N) quantum non-linear sigma model, and by Monte Carlo simulations. These calculations lead to a variety of testable predictions for neutron scattering, NMR, and magnetization measurements. Our results are in good agreement with a number of numerical simulations and experiments on undoped and lightly-doped La2δSrδCuO4La_{2-\delta} Sr_{\delta}Cu O_4.Comment: 81 pages, REVTEX 3.0, smaller updated version, YCTP-xxx

    Wetting films on chemically heterogeneous substrates

    Full text link
    Based on a microscopic density functional theory we investigate the morphology of thin liquidlike wetting films adsorbed on substrates endowed with well-defined chemical heterogeneities. As paradigmatic cases we focus on a single chemical step and on a single stripe. In view of applications in microfluidics the accuracy of guiding liquids by chemical microchannels is discussed. Finally we give a general prescription of how to investigate theoretically the wetting properties of substrates with arbitrary chemical structures.Comment: 56 pages, RevTeX, 20 Figure
    corecore